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Abstract. The low-field electron mobility associated with polar-optical-phonon scattering in
GaN is calculated from an exact solution of the Boltzmann equation at various electron densities
up to 1019 cm−3. At low electron densities the mobility= 2200 cm2 V−1 s−1 (m∗ = 0.22m0)
or 2500 cm2 V−1 s−1 (m∗ = 0.20 m0), and it decreases with increasing electron density.
The standard analytical model for the mobility is found to be reasonably accurate in the non-
degenerate regime. The effect of electron–electron scattering is discussed. A new expression for
the carrier–carrier scattering rate which embodies the binary nature of the process is advanced and
used to estimate the effect of electron–electron scattering on the polar-optical-phonon mobility.
Our estimate suggests that electron–electron scattering roughly cancels out the drop in mobility
leaving the mobility largely independent of electron density.

1. Introduction

Scattering of carriers by optical phonons is the principal mechanism determining mobility at
room temperature in pure large-bandgap semiconductors, and consequently it has received
a good deal of attention [1–3], particularly in the context of describing mobility in that
paradigm semiconductor, GaAs [4–8]. More recently, interest has focused on GaN and
associated compounds and estimates of room-temperature electron mobility have been made
based on a conveniently simple analytical model—the standard model—which describes
polar-optical-mode scattering in terms of a relaxation time determined by the absorption of
phonons [9]. This model also gives a good account of the mobility in GaAs, but then so
does an equally simple model of Callen’s [2] which is exact when the distribution function
is a drifted Maxwellian (or Fermi–Dirac). A comparison of the standard model and the
drifted model in the case of GaN showed that there was a large discrepancy between the
magnitudes of the mobilities predicted and that the standard model was the more valid [10],
at least for low electron densities. The existence of the drifted model and its prediction of
larger mobilities serves, nevertheless, to raise the problem of the effect of electron–electron
scattering on polar-optical-phonon determined mobility. The whole question of how the
mobility is affected by increasing electron density is particularly relevant to the case in
GaN, and its related compounds, whose strong piezoelectricity can be used to introduce large
populations of electrons without doping [11]. An exact solution of the Boltzmann equation in
the absence of electron–electron scattering but taking into account degeneracy predicted that
the mobility falls significantly with increasing density [12]. Assessing the effect of electron–
electron scattering is therefore of some interest, and we discuss this in the present paper.
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The effects of carrier–carrier scattering on the mobility in semiconductors have been
considered by a number of people [13–19]. Electron–electron (or hole–hole) scattering
usually produces only minor changes in mobility. An exception is when the low-temperature
mobility is determined by charged-impurity scattering, in which case the mobility can
be reduced by as much as 40% [15]. The effect depends upon the relaxation time
associated with the dominant scattering mechanism being energy dependent: the more
energy dependent the bigger the effect. However, the maximum change possible is set
by the distribution function becoming a drifted Maxwellian or Fermi–Dirac function. In the
case of GaAs the effect on the polar-optical mobility is predicted to be small because the
standard and drifted models give almost the same mobility. But this is not the case for
the polar-optical mobility in GaN, where the drifted mobility is over three times greater
than that of the standard model. Large effects of electron–electron scattering can therefore
be expected, and in what follows we attempt to estimate these in the case of pure bulk GaN
at room temperature.

2. The Boltzmann equation

Much of the early work on electron–electron scattering derived from the theory of ionized
gases [13, 20], but this work emphasized the importance of distant collisions and described
the effects in terms of the Fokker–Planck equation. In solids these distant interactions
become implicitly involved, in time-averaged form, in the potential an electron experiences
in its motion through the lattice as a Bloch wave. Encounters with other electrons can
therefore be regarded as comparatively rare and predominantly of the binary type. It is thus
appropriate to treat electron–electron collisions in the same way as other scattering events,
by the Boltzmann equation.

In the presence of a weak electric fieldF the Boltzmann equation can be linearized by
taking the distribution function to be of the form:

f (k) = f0(E)+ df0(E)

dE
8(k) · F (1)

and neglecting quadratic terms. Here,k is the wavevector andE is the energy of the
electron. The Boltzmann equation is:

eF · v(k)df0(E)

dE
=
[

df (k)

dt

]
po

+
(

df (k)

dt

)
ee

(2)

where v(k) is the group velocity of the electron. We consider only polar-optical-
phonon scattering and electron–electron scattering within a spherically symmetric, parabolic
conduction band.

The scattering components can be expressed in standard form. The rate for polar-
optical-phonon scattering is given by:[

df (k)

dt

]
po

= F

kBT
·
∫
V (k,k′)[8(k′)−8(k)] dk′

�

(2π)3

V (k,k′) = W(k,k′)f0(E)(1− f0(E))

W(k,k′) = W0
2π

�

(
h̄3ωLO

2m∗

)1/2

δk′,k+q
1

q2
(n(ωLO)+ 1

2 ± 1
2)δ(E

′ − E ± h̄ωLO)

W0 = e2

4πh̄

(
2m∗ωLO

h̄

)1/2( 1

ε∞
− 1

εs

)
. (3)
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Here, T is the absolute temperature,� is the cavity volume,ωLO is the LO phonon
frequency,n(ωLO) is the phonon occupation factor phonon,q is the wavevector andε∞,
εs are the high-frequency and low-frequency permittivities. The rate for electron–electron
scattering is:(

df (k1)

dt

)
ee

= F

kBT
·
∫
V (k′1k

′
2k1k2)[8(k

′
1)+8(k′2)−8(k1)−8(k2)]

×dk′1 dk2 dk′2
2�3

(2π)9

V (k′1k
′
2k1k2) = W(k′1k′2k1k2)f0(E

′
1)f0(E

′
2)(1− f0(E1))(1− f0(E2))

= W(k1k2k
′
1k
′
2)f0(E1)f0(E2)(1− f0(E

′
1))(1− f0(E

′
2))

W(k1k2k
′
1k
′
2) =

2π

h̄
|M|2δ(E′1+ E′2− E1− E2)

|M|2 = |M12|2+ |M21|2− |M12||M21|

M12 = e2

�ε(q, ω)

1

|g12− g′12|2
δk′1+k′2,k1+k2. (4)

In this k1 andk2 are the wavevectors of the incident and struck electrons andk′1, k′2 are
the wavevectors after the collision. The matrix element takes into account exchange and
interference between like spins. The wavevectorsg12 andg12’ are the relative wavevectors
before and after the collision i.e.:

g12 = 1
2(k1− k2) g′12 = 1

2(k
′
1− k′2). (5)

The quantityε(q, ω) is the appropriate dielectric function for the collision [21]

ε(q, ω) = εL(ω)+ εe(q, ω). (6)

The lattice permittivity is:

εL(ω) = ε∞ω
2
LO − ω2

ω2
TO − ω2

(7)

and the electron contribution is given in the random-phase approximation by the Lindhard
function:

εe(q, ω) = e2

q2�

∑
k

f (Ek)

[
1

Ek−q − Ek + h̄ω + ih̄α
+ 1

Ek+q − Ek − h̄ω − ih̄α

]
. (8)

The relevant frequency here isq ·vcm, whereq is g12−g′12; vcm is the velocity of the centre
of mass, (v1+ v2)/2.

A solution to the Boltzmann equation is usually sought via the employment of variational
[15, 16, 25] or iterative [6] techniques with screening simplified by ignoring dynamic aspects.
These techniques are most successful when the vectorφ(k) defining the antisymmetric part
of the distribution function is well behaved and has no sudden discontinuities. Unfortunately,
this is not the case for optical-phonon scattering, where a sudden onset of phonon emission
occurs whenE = h̄ωLO . Discontinuities of this sort are also going to affect the ability of
electron–electron scattering to randomize the momentum gained from the field and produce
a drifted distribution. It seems promising, therefore, to focus on the phonon-emission
discontinuity and to allow its strength to determine the effect electron–electron scattering
can have.
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3. Exact solution for polar-optical-phonon scattering only

We first use an (in principle) exact method for solving the Boltzmann equation in the
absence of electron–electron scattering in order to define the distribution function and its
discontinuities. The method, similar to that used by Delves [22], is fully described by
Fletcher and Butcher [8], who used it for n-GaAs. Only an outline of the method is given
here.

The vectorφ(k) can be expressed in terms ofk and a scalar function of energyτ(E),
which can be identified as an effective relaxation time,viz.

φ(k) = eh̄

m∗
τ(E)k. (9)

The field can be eliminated from (2) and the integrations performed in the standard way to
give the equation:

ZE3/2 = −A(E)τ(E + h̄ωLO)− B(E)τ(E − h̄ωLO)+ C(E)τ(E)
A(E) = (n(ωLO)+ 1)

f0(E + h̄ωLO)
f0(E)

×
{
(2E + h̄ωLO) sinh−1

(
E

h̄ωLO

)1/2

− [E(E + h̄ωLO)]1/2

}

B(E) = θ(E − h̄ωLO)n(ωLO)f0(E − h̄ωLO)
f0(E)

×
{
(2E − h̄ωLO) cosh−1

(
E

h̄ωLO

)1/2

− [E(E − h̄ωLO)]1/2

}

C(E) = 2E

[
(n(ωLO + 1)

f0(E + h̄ωLO)
f0(E)

sinh−1

(
E

h̄ωLO

)1/2

+θ(E − h̄ωLO)n(ωLO)f0(E − h̄ωLO)
f0(E)

cosh−1

(
E

h̄ωLO

)1/2 ]
Z = 2

W0(h̄ωLO)1/2
(10)

θ(x) is the step function. Ifτ(E) were known in the interval 0< E < h̄ωLO , (10) would
generateτ(E) in all steps of the phonon ladder. Unfortunately, small errors become rapidly
gigantic in this procedure, so guessingτ(E) is not viable. However, we know the form of
τ(E) whenE � h̄ω, viz.

τ(E)→ ZE3/2

C(E)− A(E)− B(E) . (11)

Thus we can approximateτ(E + h̄ω) for largeE to the expression in (11) and work down
the ladder in order to obtain accurate values forτ(E), E < h̄ω. Details of the method can
be found in the paper by Fletcher and Butcher [8].

This method has been applied to GaN [12] to yieldτ(E) over the first three rungs of
the phonon ladder. Since for GaN 3¯hωLO � kBT at 300 K, three rungs were sufficient
even for moderate degeneracy. Results for electron densities up to 1019 cm−3 are shown in
figure 1 along with a comparison with the two analytical models. The relaxation times for
these models were given by:

standard :τ(E) = ZE3/2

C(E)
E < h̄ωLO
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drifted : τ(E) = ZE3/2

C(E)− A(E)− B(E) . (12)

The calculations used the following magnitudes:m∗ = 0.22 m0, h̄ωLO = 0.092 eV,
εs = 9.0 ε0, ε∞ = 5.37 ε0, T = 300 K. The standard model turns out to be an excellent
approximation, whereas the drifted model predicts relaxation times several times too large.
The discontinuity atE = h̄ωLO is large at all levels of degeneracy investigated. The effect
of degeneracy is to reduce the time-constants. The effects of exclusion, which would tend
to increase the relaxation time, are more than compensated by the increase in number of
electron capable of emission. As noted previously this effect results in a marked drop of
mobility with increasing electron concentration [12].

Figure 1. Momentum-relaxation times for polar-optical-phonon scattering of electrons in GaN
at 300 K as calculated from an exact solution of the Boltzmann equation, and compared to the
predictions of the standard model (absorption only) and the drifted model (drifted Fermi–Dirac
distribution), for three values of the Fermi level.
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The longer relaxation time predicted by the drifted model suggests that electron–electron
scattering will counteract that drop in mobility. We now turn to an estimate of the magnitude
of this effect.

4. Electron–electron scattering

Of the nine integrals in (4) three, those overk′2, yield unity as a result of momentum
conservation. The integrals overk′1 can be transformed to those overg′12, sincek′1 =
g′12+ kcm. Noting that:

E′1+ E′2− E1− E2 = h̄2

2m∗
(k′21 + k′22 − k2

1 − k2
2) =

h̄2

m∗
(g′212− g2

12) (13)

we can integrate overg′12 with g12 as the polar axis, and obtain(
df (k1)

dt

)
ee

= eπ

h̄2kBT
F ·

∫
|M|2G(E)[τ(E′1)k′1+ τ(E1)k

′
2− τ(E1)k1− τ(E2)k2]

×d(−cosφ) dα12 dk2
2�2

(2π)6

G(E) = f0(E
′
1)f0(E

′
2)(1− f0(E1))(1− f0(E2))

|M|2 =
(
e2

�

)2
1

|ε(q, ω)|2
{

1

(2g12 sin(φ/2))4
+ 1

(2g21 cos(φ/2))4

− 1

(2g12 sin(φ/2))2(2g21 cos(φ/2))2

}
. (14)

E′1 andE′2 depend uponφ, the angle betweeng12 andg′12. Althoughf0(E
′
1) andf0(E

′
2) are

known by our assumption that the spherically symmetric part of the distribution function is
Fermi–Dirac at the lattice temperature, the relaxation timesτ(E′1) andτ(E′2) are unknowns,
so further progress can be made only by resorting to laborious variational or iterative
techniques, or by making approximations. In this paper the latter approach is adopted.

Before going any further, we need to make a general comment on the derivation of the
electron–electron scattering rate as given by (4). It is a comment that has been made before
in the context of charged-impurity scattering [23, 24] and it applies equally strongly here.
The essential assumption is that the scattering process is binary, but because the interaction
is coulombic, infinitely large cross-sections associated with distant interaction are predicted.
In (14), for example, the rate is inversely proportional to terms such as(2g12 sinφ12)

4 which
can be zero. Embarrassment is avoided usually by invoking static screening:

ε(q, ω) = εs(1+ q2
0/q

2) (15)

whereq0 is reciprocal screening length, but in general this is not valid since screening is
essentially dynamic [21] and may become negligible in some cases. In order to avoid infinite
cross-section it is necessary to truly restrict collisions to binary encounters by weighting the
rate with probability that no nearer scatterer exists, thus limiting the rate to that associated
with collisions with nearest neighbours. The probabilityP(b) that no scattering centre exists
with impact parameter less thanb is given by

P(b) = exp(−πNab2)

b = b0 cot(φ/2) (16)
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whereN is the density of scattering centres,a is the average separation, given by(2πN)−1/3,
andφ is the scattering angle. We propose, therefore, to modify the squared matrix element
in (14) as follows:

|M|2 =
(
e2

�

)2
1

|ε(q, ω)|2
{

P(b12)

[2g12 sin(φ/2)]4
+ P(b21)

[2g21 cos(φ/2)]4

− P(b12)P (b21)

[2g12 sin(φ/2)2g21 cos(φ/2)]2

}
(17)

where

P(b12) = exp

[
−
(
πN

4

)2/3[
e2

4π |ε(q, ω)|
]2

m∗2

4h̄4g4
12

cot(φ/2)

]
P(b21) = exp

[
−
(
πN

4

)2/3[
e2

4π |ε(q, ω)|
]2

m∗2
4h̄4g4

21

tan(φ/2)

]
. (18)

With this modification, electron–electron scattering rates remain properly binary-type rates.
We can now return to the problem of how electron–electron scattering affects polar-

optical-phonon mobility. The following comments can be made:

(1) In a fully drifted distributionτ(E′1) = τ(E′2) = τ(E1) = τ(E2), and hence the net
rate vanishes.

(2) The occupation factorG(E) favours collisions involving electrons within about
kBT of the bandedge, in the non-degenerate case, or of the Fermi level in the degenerate
case. Unlessτ(E) is a strong function of energy near the bandedge or near the Fermi
level, the net electron–electron rate for these most probable events will be small. Charged-
impurity scattering in a non-degenerate population at low temperatures does indeed have a
relaxation time that varies relatively rapidly with energy, and that is why electron–electron
scattering has a significant effect in that case [15]. In the case of other elastic or quasi-elastic
scattering processes the variation with energy ofτ(E) is rather weak and, consequently,
electron–electron scattering has little effect.

(3) We notice that in the case of optical-phonon scattering the dependence ofτ(E)

on energy is relatively weak except at the discontinuities. Thus for non-degenerate and
weakly degenerate material the most frequent electron–electron collisions can have only a
correspondingly weak effect on the mobility. It follows that any significant effect on the
mobility can come only from less frequent collisions involving an electron at or just above
the first discontinuity.

We therefore take as a measure of the strength of electron-electron scattering to affect
the mobility the ratio of the electron–electron scattering-out rateWee at E = h̄ωLO to the
characteristic phonon rateW0. If µpo is the mobility in the absence of electron–electron
scattering andµdrif t is the corresponding mobility for a drifted distribution, then we estimate
the effect of electron–electron scattering via the simple formula:

µ = W0µpo +Weeµdrif t

W0+Wee

. (19)

The calculation ofWee is straightforward if screening by electrons is ignored. This is a
reasonable approximation since the frequency of the interaction is, for ¯h2k2

1/2m
∗ = h̄ωLO

andk1� k2:

ω = ωLO sin(φ/2). (20)
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The plasmon frequency is of orderωLO only whenN ≈ 1019 cm−3, so for most of the
range of interest screening by the electron gas will be weak, and the dielectric function can
be taken to be determined by the low-frequency response of the lattice (i.e.ε(q, ω) ≈ εs).

Using (17) for|M2| and ignoring screening allows the integrations to be straightforward.
The integrations over angleφ anda12 lead to a simple expression for the cross-sectionσ ,
namely

σ = (2π)1/3N−2/3. (21)

The required rate is then obtained by integrating overk2. Thus

Wee = σ 〈v〉Nf0(h̄ωLO) ≈ σv(h̄ωLO)Nf0(h̄ωLO). (22)

Inserting this rate into (19) allows us to estimate the effect of electron–electron scattering
on the mobility. Figure 2 shows the result.

Figure 2. Electron mobility in GaN at 300 K as a function of electron density. The pop (polar-
optical-phonon) mobility is from the exact solution without electron–electron scattering. The
drifted mobility is the mobility with electron–electron scattering dominant. The pop with ee
scattering is the model mobility (19).

Our model is most applicable for low levels of degeneracy. As figure 1 shows, increasing
degeneracy increases the energy dependence ofτ(E) away from the discontinuity, and this
will tend to enhance the effect of most frequent electron–electron scattering collisions. Our
result for the mobility variation at high densities therefore represents an underestimate of
the effect of electron–electron scattering. This suggests that the mobility, in fact, reduces
very little with electron density.

5. Discussion

The exact solution of the Boltzmann equation in the absence of electron–electron scattering
yielded a room-temperature mobility of about 2200 cm2 V−1 s−1. There is some uncertainty
about the effective mass; if taken to be 0.20m0 the mobility would rise to 2500 cm2 V−1 s−1.
Increasing the electron concentration (without adding new scattering centres) reduces the
mobility as more electrons populate states with energyE > h̄ωLO , so allowing them to
emit as well as absorb optical phonons. The appropriate analytical model for the mobility
works well in the non-degenerate regime and also predicts a reduction of mobility with
increasing density. Such a reduction can be expected to occur whenever ¯hωLO � kBT and
the standard model is applicable.

Increasing the electron population introduces two new effects. One is enhanced electron–
electron scattering; the other is the coupling of plasmon and phonon modes. Coupled modes
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broaden the spectrum of quanta with which the electron can interact and will therefore tend
to soften the discontinuities in the distribution function besides varying the strength of the
interaction. These effects become important whenωp ∼= ωLO whereωp is the plasma
frequency,e2N/ε∞m∗. This occurs in GaN whenN > 1019 cm−3. Whenω2

p � ω2
LO , the

interaction with the phonons becomes statically screened. In this report we have ignored
coupled-mode effects and instead we have focused mainly on the effect of electron–electron
scattering at comparatively modest densities (N 6 1019 cm−3).

We have contributed to the theory of electron–electron scattering by including the
probability of the interaction being truly binary. This removes the divergence characteristic
of the Coulomb interaction in a basic way that is independent of any details of screening.
This was particularly important to do in the present context which emphasized the scattering
of an electron with energy ¯hωLO by another electron since this occurred at a speed which
tended to inhibit screening by the electron gas altogether.

Our treatment of the effect of electron–electron scattering on mobility has been
profoundly influenced by the existence of the relaxation-time discontinuity atE = h̄ωLO . By
concentrating on electron–electron scattering in its vicinity rather than in the energy regime
where collisions are most frequent, a choice made possible only by the comparatively large
magnitude of the phonon energy, we believe we have identified the essential physics of the
effect. Inevitably, given the simplicity of our model, the quantitative estimate of the change
of mobility depicted in figure 2 is far from definitive. It will be interesting to compare it
with the results of a more sophisticated calculation when this becomes available. However,
our estimate suggests that electron–electron scattering more or less counters the drop in
mobility due to enhanced phonon emission, leaving the mobility roughly constant.

Acknowledgments

This work was supported by the US Office of Naval Research MURI grant No N00014-
96-1-1223. The author is indebted to Professor Lester F Eastman for encouraging this
investigation while the author was visiting Cornell.

References
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